
Supplementary Information

Frequency of Polygonal Type

Tension Coefficient Pentagon Hexagon Heptagon

1.0 0.24 0.55 0.16

1.5 0.24 0.54 0.16

2.0 0.24 0.54 0.16

Table S 1: Frequency of polygonal type in the equilibrium state with different tension coef-
ficients. The orthogonal scheme is employed in simulations.

Random Largest Side Orthogonal

Trial No. Rearrangements Division Rearrangements Division Rearrangements Division

1 423 4162 150 4171 148 4189

2 435 4123 160 4180 149 4152

3 454 4184 173 4177 138 4135

4 430 4109 148 4178 176 4166

5 451 4135 159 4159 143 4123

6 412 4144 179 4197 147 4186

7 433 4132 156 4119 165 4180

8 442 4151 185 4179 166 4155

9 444 4148 152 4148 158 4186

10 448 4172 141 4185 149 4122

Average 437 4146 161 4169 156 4159

Table S 2: The number of divisions and rearrangements observed using random, largest side,
and Orthogonal division schemes, with η=1.
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η 0.5 1.0 1.5 2.0

Trial No. Rearrangements Divisions Rearrangements Divisions Rearrangements Divisions Rearrangements Divisions

1 224 4170 148 4159 130 4197 113 4180

2 234 4170 138 4189 125 4151 121 4133

3 255 4139 173 4135 97 4161 111 4159

4 254 4141 176 4166 100 4189 95 4116

5 228 4125 143 4123 149 4146 111 4162

6 232 4194 147 4186 121 4128 95 4161

7 238 4114 165 4180 108 4172 95 4169

8 222 4161 166 4155 115 4149 118 4155

9 245 4192 158 4186 133 4159 111 4105

10 237 4154 149 4122 129 4152 105 4144

Average 237 4156 156 4159 121 4160 108 4148

Table S 3: The number of divisions and rearrangements observed with different values of η
using the orthogonal division scheme.

Geometric Model of Cell

The underlying physics of our two-dimensional cellular model is that of a well-studied topic
of surface energy minimization, also called bubble formation (1; 2; 3). In this model, each cell
minimizes its surface energy, as prominently observed in the developing retina of drosophila,
where differential expression of N-cadherin leads to the formation of an overall shape that
minimizes their surface contact with surrounding cells (4).

Formally, a biological cell is represented by the combination of three types of geometric
elements (Fig S1). First, a geometric cell ci is a spatial region representing the volume of
cell i (Fig S1a). It is a disk when in isolation, but can be a disk segment when the cell is
contacting other cell(s). It can take the shape of the union of a polygon and one or more disk
segment(s), when there are multiple contacting cells in the surroundings, and at the same
time there is one or more free boundaries (Fig S1b-c). When completely surrounded by other
cells, it takes the form of a polygon (Fig S1d). Cells can have different sizes.

Second, edges represent the boundaries of a cell. There are two types of edges: outer

edges ei for cell i and inner edges ei,j between cell i and cell j (Fig S1b). An outer edge ei

is an arc or a circle, and represents the boundary between cell ci and the outside medium
(denoted as c0). ei is a full circle when the cell exists in isolation, but becomes one or more
arcs if the medium does not fully surround the cell. An inner edge ei,j occurs when a cell
ci is in contact with another cell cj. Their shared boundary is a face with constant surface
curvature (1), but is modeled as a straight line segment here. An inner edge appears twice,
once for each of the neighboring cell, with the order of the two indices reversed. This reflects
the fact that each cell has a separate wall.

Third, vertex is the junction point of three edges. When two cells ci and cj make contact
(Fig S1b), their outer edges (arcs) ei and ej intersect at two vertices, vi,0,j (indices in clock-
wise direction) and vj,0,i, which are also the two end-points of the inner edge ei,j (Fig S1b).
When three cells ci, cj and ck intersect (Fig S1c), they form a single vertex vi,j,k. In our
two-dimensional model, we assume no more than three cells can intersect as seen in soap
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Figure S 1: Two-dimensional cell model. a) An isolated cell is modeled as a disk. b) A cell is
modeled as a disk segment when contacting other cell(s). An outer edge ei is an arc or a circle,
representing the boundary between cell ci and the outside medium (denoted as c0). An inner edge

ei,j occurs when a cell ci is in contact with another cell cj . Their shared boundary is modeled as
a straight line segment. When two cells ci and cj make contact, their outer edges (arcs) ei and ej

intersect at two vertices vi,0,j and vj,0,i, which are also the two end-points of the inner edge ei,j . c)
When three cells ci, cj and ck intersect, they form a vertex vi,j,k. d) A cell completely surrounded
by other cells is represented as a polygon.

bubbles (1; 2; 3). That is, no more than three edges can meet at a vertex.
For a tissue consisting of n cells, we denote the set of cell centers as Z = {z1, · · · , zn},

where zi ∈ R
2 is the coordinates of the center of cell i. The set of edges is denoted as

E ≡ {ei} ∪ {ei,j}, and the set of vertices is denoted as V = {vi,j,k}. The overall state S of
a tissue with n cells is defined as: S = (Z,E,V ). It fully determines the geometric pattern
of the tissue formed by these n cells.

Physical Model of Cell and Cell Growth

Stationary Model We model cells with the assumption that they are in a stationary state,
in which changes are slow, and all forces in the system at every moment are balanced out by
each other.

We use discrete time steps to model incremental changes of cell volume, which is dictated
by the underlying biology, e.g. cell birth, cell death, cell growth and shrinkage, and changes
of cell wall properties. In our model, we assume the energy of the cells reaches a minimum
at the state S:

E(S) = E(X,E,V ) = min .
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Forces exerting on the system of cells at state S have a zero net sum. We model the
mechanical forces using only the vertices. The geometry of the whole system, including the
edges and cells, and the forces in each cell, all will follow once the vertex set V is specified.
We have:

F (S) ≡ F (V ) =
dE(V )

dV
= 0.

Mechanical Forces A number of physical forces exist inside a cell. Cytoskeletal micro-
filament (9; 10; 11), intermediate filaments (12), and cell membrane all exert compression

forces on a cell. In addition, there exists adhesion or alternatively repulsion force between
cells. These forces are summed up and modeled as a tension force that exerts along the
direction ei,j of inner edge (interior cell boundary), or along the tangent direction of outer
edge ei (free cell boundary).

There are also expansion forces in a cell. These include those from microtubles (13; 10;
14; 11) and the extracellular matrix (ECM) (15). We model these forces as a pressure force

that acts along the direction normal to the edge. Pressure force only exists for an inner edge
and not for arc/outer edge. Tension force exists at vertices due to both inner and outer edges.

In our model, cells minimize their energy and take upon the appearance and behavior of
soap bubbles (4). According to the soap bubble model, cell walls take the shape of constant
mean curvature (CMC) surfaces under fixed volume and pressure conditions (1). The most
notable examples are spherical shape and biconcave erythrocyte shape (16). We therefore
model cells as intersecting circular disks.

Figure S 2: Forces applied to the junction vertex of three cells a, b, and c. The tension force

T (ei,j) exerts along the direction ei,j of an inner edge (interior cell boundary), or along the tangent
direction of outer edge ei (free cell boundary), where (i, j) are the two indices of cells a, b, or c. The
pressure force P (ei,j) acts along the direction normal to the cell boundary, in the direction from
the cell with higher pressure to that with lower pressure.

Physical forces are modeled to act at vertices (Fig S2). For inner edges, although the
physical cell wall will adopt a curved surface under the bubble model, the curvature is small
and we simplify it as a straight line segment. The physical forces originally tangent to the
curved surface are now decomposed into two components for the straight line segment. They
are the tension force T (ei,j) and the pressure force P (ei,j). Tension force acts in the direction
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of shortening the edge, and pressure force follows the direction of the difference of pressure
in two cells sharing the edge.

For outer edges, we take the curved surface into account and model it as an arc. In this
case, the physical force tangent to the curved surface is modeled directly as the tension force
T (ei) for this cell, in the direction of shortening the arc. The pressure inside the boundary
cell containing this outer edge determines the curvature of the outer edge, and therefore
determines the tangential direction of the tension force.

Formally, the forces applied to a vertex v in V can be decomposed as

Fv =
∑

e, s.t.v∈e

[T(e) + P(e)], (1)

which sums over all edges e’s ending in the vertex v. Here T(e) and P(e) are the forces
acting on edge e through cell wall tension and intracellular pressure, respectively.

For the edge ei,j between cells i and j, the tension force is always tangential to the edge
ei,j:

T (ei,j) = η(i, j)ei,j,

where η is the tension coefficient, which may depend on the cell types of both cells, and ei,j

is the edge vector. We assume ei,j is in the direction of shortening ei,j, otherwise, we add a
coefficient “−1” in front of this formula.

Pressure induced force is in the direction normal to the inner edge:

P (ei,j) = (Pi − Pj)|ei,j|n(i,j),

where Pi and Pj are the pressures in two cells, |ei,j| is the length of the inner edge, and
n(i,j) is the unit vector normal to the edge in the direction from the cell with higher pressure
to the cell with lower pressure. Although pressure force exerts on the whole inner edge,
we decompose it equivalently to the two end vertices, each distributed with 1

2
of the total

pressure force P (ei,j).
For an outer edge ei of cell i, the tension force acting on a vertex v is always tangential

to the arc ei, in the direction tv of shortening ei:

T (ei) = η(i, 0)|ei|tv.

Here 0 denotes the outside medium, η(i, 0) is the tension coefficient of the outer edge of cell
i. The internal pressure is compensated by pressure due to the curvature of the arc of the
cell boundary. Therefore, pressure induced force is zero. The value of the pressure inside an
outer cell i itself is determined by the curvature of the edge:

Pi = η(i, 0)/ri.

Here ri is the radius of the arc.
In general, forces at the two vertices of an edge can be in different direction, which can

result in displacement of the edge. The movement of an edge is the result of the volume
change of the cell. The new position of the edge forms an irregular quadrilateral with the
edge before the movement. We distribute this volume change to the two vertices, each with
a triangle. This volume change happens in each time integration step (Fig S3).
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Figure S 3: Diagram representing the forces involved during cell growth. Vertices v1 and v2 are
moved by ∆v1 and ∆v2 due to the forces Fv1

and Fv2
, during the growth process respectively. e is

the edge connecting the two vertices. Its length is |e|.

Cell Growth We assign different volume changes to individual cells to reflect different
stage of cell cycle. For cell i, when ∆Vi > 0, cell i grows. When ∆Vi < 0, cell i shrinks.
When ∆Vi = 0, cell i stays in a steady state.

a b c

d e

Figure S 4: Cell geometry is determined by the ratio of the tension coefficients. a) when η(i, j) = 0,
there is no tension on an inner edge, and it can be regarded as an imaginary cell wall; b) when
η(i, j) = 0.5η(i, 0), there is a strong adhesion force between the two cells; c) when η(i, j) = η(i, 0) =
η(j, 0), the two cells behave as if physically they have the same wall; d) when η(i, j) = 1.5η(i, 0),
there is a weak adhesion force between the two cells; e) when η(i, j) ≥ 2η(i, 0), The two cells have no
adhesion and behave like soccer balls. Adding an inner wall would be more costly, as it is equivalent
to adding two outer walls. In this case, the overall energy of the two cells is not reduced.

Cell Shape In our model, the cell walls take the shape of constant mean curvature surfaces
under fixed volume and pressure conditions. Physically, each cell has its own wall, and the
surface tension η(i, j) at an inner edge depends on the properties of both cell walls. The final
shape of a cell depends on the ratio of tension coefficient η(i, j) for inner edge and η(i, 0)
for the outer edge. When η(i, j) = 0, there is no tension on an inner edge, and it can be
regarded as an imaginary cell wall. When η(i, j) = 0.5η(i, 0), there is a strong adhesion force
between the two cells. When η(i, j) = η(i, 0) = η(j, 0), the two cells behave as if physically
they have the same wall. When η(i, j) ≥ 2η(i, 0), adding an inner wall would be more costly,
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as it is equivalent to adding two outer walls. In this case, the overall energy of the two cells
is not reduced. The two cells therefore have no adhesion and behave like soccer balls.

Calculating Forces For cell i that experiences cell volume change ∆Vi at time step t, the
net force at each of its vertices can be calculated based on the assumption of stationary state:

∆Vi =
1

2
σ

∑

e

∑

v(e)

|F v(e) × e|. (2)

Here the coefficient of 1/2 represents the change in volume of one of the two triangles formed
by the division of the irregular quadrilateral (Fig S3). The summation is over all edges e of
cell i and over both end vertices {v(e)} of each edge, “×” represents vector cross product,
and σ is the constant for the integration step. Eqn (2) is solved to obtain the forces at each
vertex.

Updating vertex position. At time t + 1, the location of a vertex vi after the volume
change is updated to:

vi(t + 1) = vi(t) + σF vi
(t), (3)

where vi(t) and vi(t+1) are locations of vertex i before and after the time step, respectively.
Time t is an integer representing the number of time steps since the initial time, σ is a
constant that controls the convergence rate towards stationary state, and F vi

is the net force
exerting at vertex location vi.

Algorithm for Calculating Stationary State We assume all cells exist in stationary
state at the end of each time step of simulation. Cells can grow or shrink during a time step.
The amount of volume changes are assigned from models of underlying biological process.
The altered cell volume leads to movement of cell boundaries. In addition, cell wall properties
such as the surface tension coefficients may also be different at different time steps.

All these changes are introduced in increments of small fractions. For each increment, we
solve Eqn (2) to obtain the updated forces. We then move the vertices using Eqn (3) to their
new locations. After the final increment of volume or cell property change was introduced,
we continue iterations with constant volume and constant cell properties. Vertices are further
moved until the system relaxes and reaches stationary state, and a balance of the forces is
established (Eqn 2). This is the same as applying a gradient search method to find a local
minimum of system energy of the cells (17). We then take the geometric patterns of the cells
at this state as that of time step t + 1.

The procedure for computing the stationary state of the cell pattern after one time
step is illustrated in Algorithm 1. Here F vi

are the forces acting on vertex i; V (t) =
(v1(t), · · · ,vm(t)) is the vector of coordinates of all of the m vertices at time t; ∆V(t) =
(∆V1, · · · , ∆Vm) is the vector of desired volume changes associated with the vertices for all
cells at time t, ∆η is the vector representing desired changes in the cell properties (e.g., cell
tension coefficients, cell color) for all cells at time step t. The output is the new coordinates
of the vertices V (t + 1) at time step t + 1.
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Algorithm 1 UpdateCellPattern (V (t), ∆V(t), ∆η(t), σ, k)

//ǫ: Threshold of forces

//k: Parameter for step size in incremental volume change.

while F v > ǫ for any vertices or ∆V(t) not reached yet do

Solve Eqn 2 to obtain updated forces F v for all vertices.
if desired amount of changes in ∆V(t) not reached yet then

Introduce incremental changes ∆V(t)/k,
end if

Obtain new positions for all vertices using v
′

i = vi + σF vi

Update topological changes if required
end while

Assign vi(t + 1) = v
′

i for all vertices
return V (t + 1) = (v1(t + 1), · · · ,vm(t + 1))

The overall simulation of cellular pattern formation is carried out by repeatedly applying
this algorithm to model different biological phenomena, with pre-defined time-dependent vol-
ume changes and cell properties changes assigned as input. Stochasticity and other physical
factors can be incorporated in schemes that assign these changes.

Topological Changes of Cellular Pattern

An important ingredient in modeling dynamic changes of cells is an accurate account of all
topological changes. We discuss these changes below.

Cell Birth, Cell Division, and Cell Death Topological changes occur during cell birth,
cell division, and cell death. In our model, a new cell is generated at cell birth. We model
this by inserting a new disk. A new cell is also formed if an existing cell divides. For cell
division, we add an edge inside the existing dividing cell.

When a cell dies gradually, its volume decreases, and it eventually disappears, making
new empty room in the space. A cell can also disappear suddenly. In both cases of cell death,
we carry out two primitive operations. First, the outer edge of the dying cell is removed at
the moment when cell dies; Second, the inner edges of all the cells contacting the dying cell
are replaced with outer edges.

Cell Contact Changes In addition to cell birth and cell death, there are three additional
types of topological changes when cells grow or shrink and their boundaries move, resulting
in cell rearrangement. We use three primitives to model these topological changes, which
occur when the same space would be occupied by more than one cell:

Edge Insertion When two cells grow, they may come in contact with each other. When
this happens, we add an inner edge to represent the newly formed intersection plane.

Void Removal When three cells are grown together, new inner edges are introduced be-
tween two contacting cells. At the moment when three cells meet at a common vertex, we
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Figure S 5: Possible topological changes when cells grow or when their boundaries move. (top) Edge
insertion. When two isolated cells come into contact, we add an edge to represent the intersection
plane of the boundary between these two cells. (middle) Void removal. When three cells come
into contact, the curve triangular empty space is replaced by a vertex where the inner edges meet.
(bottom) Edge flip. When two previously disconnected cells expand to meet while pushing away
two previously connected cells, we replace one inner edge with a new inner edge.

need to replace the curved triangular empty space (void) with a new vertex where the three
inner edges meet.

Edge Flip When two originally disconnected cells expand and come into contact, they
may squeeze away two previously contacting cells. In this case, we remove the inner edge
between two cells originally in contact, and add a new inner edge between the two cells that
now come into contact.

Together with the three topological changes of inserting a cell due to cell birth, inserting
an inner edge due to cell division, and deleting a cell due to cell death, we exhaust all
possible topological changes of cellular patterns modeled in two dimensional space. In our
model, these topological changes can occur at any discrete time step during the simulation.
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